博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
『TensorFlow』单&双隐藏层自编码器设计
阅读量:7143 次
发布时间:2019-06-29

本文共 14193 字,大约阅读时间需要 47 分钟。

计算图设计

很简单的实践,

  • 多了个隐藏层
  • 没有上节的高斯噪声
  • 网络写法由上节的面向对象改为了函数式编程,

其他没有特别需要注意的,实现如下:

import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'learning_rate = 0.01                          # 学习率training_epochs = 20                          # 训练轮数,1轮等于n_samples/batch_sizebatch_size = 128                              # batch容量display_step = 1                              # 展示间隔example_to_show = 10                          # 展示图像数目n_hidden_units = 256n_input_units = 784n_output_units = n_input_unitsdef WeightsVariable(n_in, n_out, name_str):    return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)def biasesVariable(n_out, name_str):    return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)def encoder(x_origin, activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer'):        Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')        biases = biasesVariable(n_hidden_units, 'biases')        x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))    return x_codedef decode(x_code, activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer'):        Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')        biases = biasesVariable(n_output_units, 'biases')        x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))    return x_decodewith tf.Graph().as_default():    with tf.name_scope('Input'):        X_input = tf.placeholder(tf.float32, [None, n_input_units])    with tf.name_scope('Encode'):        X_code = encoder(X_input)    with tf.name_scope('decode'):        X_decode = decode(X_code)    with tf.name_scope('loss'):        loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))    with tf.name_scope('train'):        Optimizer = tf.train.RMSPropOptimizer(learning_rate)        train = Optimizer.minimize(loss)    init = tf.global_variables_initializer()    # 因为使用了tf.Graph.as_default()上下文环境    # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)    writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())    writer.flush()

 计算图:

训练程序

import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'learning_rate = 0.01  # 学习率training_epochs = 20  # 训练轮数,1轮等于n_samples/batch_sizebatch_size = 128  # batch容量display_step = 1  # 展示间隔example_to_show = 10  # 展示图像数目n_hidden_units = 256n_input_units = 784n_output_units = n_input_unitsdef WeightsVariable(n_in, n_out, name_str):    return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)def biasesVariable(n_out, name_str):    return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)def encoder(x_origin, activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer'):        Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')        biases = biasesVariable(n_hidden_units, 'biases')        x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))    return x_codedef decode(x_code, activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer'):        Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')        biases = biasesVariable(n_output_units, 'biases')        x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))    return x_decodewith tf.Graph().as_default():    with tf.name_scope('Input'):        X_input = tf.placeholder(tf.float32, [None, n_input_units])    with tf.name_scope('Encode'):        X_code = encoder(X_input)    with tf.name_scope('decode'):        X_decode = decode(X_code)    with tf.name_scope('loss'):        loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))    with tf.name_scope('train'):        Optimizer = tf.train.RMSPropOptimizer(learning_rate)        train = Optimizer.minimize(loss)    init = tf.global_variables_initializer()    # 因为使用了tf.Graph.as_default()上下文环境    # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)    writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())    writer.flush()    mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True)    with tf.Session() as sess:        sess.run(init)        total_batch = int(mnist.train.num_examples / batch_size)        for epoch in range(training_epochs):            for i in range(total_batch):                batch_xs, batch_ys = mnist.train.next_batch(batch_size)                _, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})                Loss = sess.run(loss, feed_dict={X_input: batch_xs})            if epoch % display_step == 0:                print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))        writer.close()        print('训练完毕!')        '''比较输入和输出的图像'''        # 输出图像获取        reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})        # 画布建立        f, a = plt.subplots(2, 10, figsize=(10, 2))        for i in range(example_to_show):            a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))            a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))        f.show()  # 渲染图像        plt.draw()  # 刷新图像        # plt.waitforbuttonpress()

 debug一上午的收获:接受sess.run输出的变量名不要和tensor节点的变量名重复,会出错的... ...好低级的错误。mmdz

比较图像一部分之前没做过,介绍了matplotlib.pyplot的花式用法,

  原来plt.subplots()是会返回 画布句柄 & 子图集合 句柄的,子图集合句柄可以像数组一样调用子图

   pyplot是有show()和draw()两个方法的,show是展示出画布,draw会刷新原图,可以交互的修改画布

   waitforbuttonpress()监听键盘按键如果用户按的是键盘,返回True,如果是其他(如鼠标单击),则返回False

另,发现用surface写程序其实还挺带感... ...

输出图像如下:

                

双隐藏层版本

import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'batch_size = 128  # batch容量display_step = 1  # 展示间隔learning_rate = 0.01  # 学习率training_epochs = 20  # 训练轮数,1轮等于n_samples/batch_sizeexample_to_show = 10  # 展示图像数目n_hidden1_units = 256  # 第一隐藏层n_hidden2_units = 128  # 第二隐藏层n_input_units = 784n_output_units = n_input_unitsdef WeightsVariable(n_in, n_out, name_str):    return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)def biasesVariable(n_out, name_str):    return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)def encoder(x_origin, activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer1'):        Weights = WeightsVariable(n_input_units, n_hidden1_units, 'Weights')        biases = biasesVariable(n_hidden1_units, 'biases')        x_code1 = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))    with tf.name_scope('Layer2'):        Weights = WeightsVariable(n_hidden1_units, n_hidden2_units, 'Weights')        biases = biasesVariable(n_hidden2_units, 'biases')        x_code2 = activate_func(tf.add(tf.matmul(x_code1, Weights), biases))    return x_code2def decode(x_code, activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer1'):        Weights = WeightsVariable(n_hidden2_units, n_hidden1_units, 'Weights')        biases = biasesVariable(n_hidden1_units, 'biases')        x_decode1 = activate_func(tf.add(tf.matmul(x_code, Weights), biases))    with tf.name_scope('Layer2'):        Weights = WeightsVariable(n_hidden1_units, n_output_units, 'Weights')        biases = biasesVariable(n_output_units, 'biases')        x_decode2 = activate_func(tf.add(tf.matmul(x_decode1, Weights), biases))    return x_decode2with tf.Graph().as_default():    with tf.name_scope('Input'):        X_input = tf.placeholder(tf.float32, [None, n_input_units])    with tf.name_scope('Encode'):        X_code = encoder(X_input)    with tf.name_scope('decode'):        X_decode = decode(X_code)    with tf.name_scope('loss'):        loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))    with tf.name_scope('train'):        Optimizer = tf.train.RMSPropOptimizer(learning_rate)        train = Optimizer.minimize(loss)    init = tf.global_variables_initializer()    # 因为使用了tf.Graph.as_default()上下文环境    # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)    writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())    writer.flush()    mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True)    with tf.Session() as sess:        sess.run(init)        total_batch = int(mnist.train.num_examples / batch_size)        for epoch in range(training_epochs):            for i in range(total_batch):                batch_xs, batch_ys = mnist.train.next_batch(batch_size)                _, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})                Loss = sess.run(loss, feed_dict={X_input: batch_xs})            if epoch % display_step == 0:                print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))        writer.close()        print('训练完毕!')        '''比较输入和输出的图像'''        # 输出图像获取        reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})        # 画布建立        f, a = plt.subplots(2, 10, figsize=(10, 2))        for i in range(example_to_show):            a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))            a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))        f.show()  # 渲染图像        plt.draw()  # 刷新图像        # plt.waitforbuttonpress()

 输出图像如下:

由于压缩到128个节点损失信息过多,所以结果不如之前单层的好。

有意思的是我们把256的那层改成128(也就是双128)后,结果反而比上面的要好:

但是仍然比不上单隐藏层,数据比较简单时候复杂网络效果可能不那么好(loss值我没有截取,但实际上是这样,虽然不同网络loss直接比较没什么意义),当然,也有可能是复杂网络没收敛的结果。

可视化双隐藏层自编码器

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'batch_size = 128  # batch容量display_step = 1  # 展示间隔learning_rate = 0.01  # 学习率training_epochs = 20  # 训练轮数,1轮等于n_samples/batch_sizeexample_to_show = 10  # 展示图像数目n_hidden1_units = 256  # 第一隐藏层n_hidden2_units = 128  # 第二隐藏层n_input_units = 784n_output_units = n_input_unitsdef variable_summaries(var): #<---    """    可视化变量全部相关参数    :param var:     :return:     """    with tf.name_scope('summaries'):        mean = tf.reduce_mean(var)        tf.summary.histogram('mean', mean)        with tf.name_scope('stddev'):            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))            tf.summary.scalar('stddev', stddev)  # 注意,这是标量            tf.summary.scalar('max', tf.reduce_max(var))            tf.summary.scalar('min', tf.reduce_min(var))            tf.summary.histogram('histogram', var)def WeightsVariable(n_in,n_out,name_str):    return tf.Variable(tf.random_normal([n_in,n_out]),dtype=tf.float32,name=name_str)def biasesVariable(n_out,name_str):    return tf.Variable(tf.random_normal([n_out]),dtype=tf.float32,name=name_str)def encoder(x_origin,activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer1'):        Weights = WeightsVariable(n_input_units,n_hidden1_units,'Weights')        biases = biasesVariable(n_hidden1_units,'biases')        x_code1 = activate_func(tf.add(tf.matmul(x_origin,Weights),biases))        variable_summaries(Weights) #<---        variable_summaries(biases) #<---    with tf.name_scope('Layer2'):        Weights = WeightsVariable(n_hidden1_units,n_hidden2_units,'Weights')        biases = biasesVariable(n_hidden2_units,'biases')        x_code2 = activate_func(tf.add(tf.matmul(x_code1,Weights),biases))        variable_summaries(Weights) #<---        variable_summaries(biases) #<---    return x_code2def decode(x_code,activate_func=tf.nn.sigmoid):    with tf.name_scope('Layer1'):        Weights = WeightsVariable(n_hidden2_units,n_hidden1_units,'Weights')        biases = biasesVariable(n_hidden1_units,'biases')        x_decode1 = activate_func(tf.add(tf.matmul(x_code,Weights),biases))        variable_summaries(Weights) #<---        variable_summaries(biases) #<---    with tf.name_scope('Layer2'):        Weights = WeightsVariable(n_hidden1_units,n_output_units,'Weights')        biases = biasesVariable(n_output_units,'biases')        x_decode2 = activate_func(tf.add(tf.matmul(x_decode1,Weights),biases))        variable_summaries(Weights) #<---        variable_summaries(biases) #<---    return x_decode2with tf.Graph().as_default():    with tf.name_scope('Input'):        X_input = tf.placeholder(tf.float32,[None,n_input_units])    with tf.name_scope('Encode'):        X_code = encoder(X_input)    with tf.name_scope('decode'):        X_decode = decode(X_code)    with tf.name_scope('loss'):        loss = tf.reduce_mean(tf.pow(X_input - X_decode,2))    with tf.name_scope('train'):        Optimizer = tf.train.RMSPropOptimizer(learning_rate)        train = Optimizer.minimize(loss)    # 标量汇总    with tf.name_scope('LossSummary'):        tf.summary.scalar('loss',loss)        tf.summary.scalar('learning_rate',learning_rate)    # 图像展示    with tf.name_scope('ImageSummary'):        image_original = tf.reshape(X_input,[-1, 28, 28, 1])        image_reconstruction = tf.reshape(X_decode, [-1, 28, 28, 1])        tf.summary.image('image_original', image_original, 9)        tf.summary.image('image_recinstruction', image_reconstruction, 9)    # 汇总    merged_summary = tf.summary.merge_all()    init = tf.global_variables_initializer()    writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())    writer.flush()    mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True)    with tf.Session() as sess:        sess.run(init)        total_batch = int(mnist.train.num_examples / batch_size)        for epoch in range(training_epochs):            for i in range(total_batch):                batch_xs,batch_ys = mnist.train.next_batch(batch_size)                _,Loss = sess.run([train,loss],feed_dict={X_input: batch_xs})                Loss = sess.run(loss,feed_dict={X_input: batch_xs})            if epoch % display_step == 0:                print('Epoch: %04d' % (epoch + 1),'loss= ','{:.9f}'.format(Loss))                summary_str = sess.run(merged_summary,feed_dict={X_input: batch_xs}) #<---                writer.add_summary(summary_str,epoch) #<---                writer.flush() #<---        writer.close()        print('训练完毕!')

几个有意思的发现,

  使用之前的图像输出方式时,win下matplotlib.pyplot的绘画框会立即退出,所以要使用 plt.waitforbuttonpress() 命令。

  win下使用plt绘画色彩和linux不一样,效果如下:

 

  

输出图如下:

对比图像如下(截自tensorboard):

 

转载地址:http://llgrl.baihongyu.com/

你可能感兴趣的文章
Unity3d热更新(四):压缩文件
查看>>
sysctl.conf文件详解
查看>>
在连接中的EOF意味着什么?
查看>>
我的友情链接
查看>>
本地存储
查看>>
推荐几本软件测试方面的经典书籍
查看>>
云计算时代的P2P技术
查看>>
BCL和CoreFx的区别
查看>>
HTML标签marquee实现滚动效果
查看>>
JS的加载和执行
查看>>
react-native环境配置入坑指南.
查看>>
[windos] 命令
查看>>
使用队列实现栈(2)(Java)
查看>>
洛谷P3569 [POI2014]KAR-Cards(线段树)
查看>>
python venv虚拟环境
查看>>
使用qemu
查看>>
2019PKU\THU WC题解
查看>>
C++中accumulate的用法
查看>>
linux下查找可执行文件
查看>>
5.4.5 索引
查看>>